skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hebnes, Oliver Lerstøl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Semiconductor materials provide a compelling platform for quantum technologies (QT). However, identifying promising material hosts among the plethora of candidates is a major challenge. Therefore, we have developed a framework for the automated discovery of semiconductor platforms for QT using material informatics and machine learning methods. Different approaches were implemented to label data for training the supervised machine learning (ML) algorithms logistic regression, decision trees, random forests and gradient boosting. We find that an empirical approach relying exclusively on findings from the literature yields a clear separation between predicted suitable and unsuitable candidates. In contrast to expectations from the literature focusing on band gap and ionic character as important properties for QT compatibility, the ML methods highlight features related to symmetry and crystal structure, including bond length, orientation and radial distribution, as influential when predicting a material as suitable for QT. 
    more » « less